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WAVE EQUATION HYDRODYNAMICS ON 
DEFORMING ELEMENTS 
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Tllayer School of Engineering, Dartmouth College, Hanover, N H  03755, U.S.A. 

SUMMARY 
The shallow water wave equation is derived in a general deforming co-ordinate system. A weak form is 
developed which displays the natural boundary condition prominently and which may be implemented on 
Co elements. A time-stepping algorithm is implemented with elastic mapping of interior node motion. 
Lossless test cases show agreement with analytic solutions. A simple hypothetical test case shows intuitively 
good behaviour a t  length scales approaching those required of estuarine simulations. 
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INTRODUCTION 

In this paper we develop solutions to the shallow water equations with moving boundaries for 
problems approaching estuarine length scales. The basic deforming element approach follows 
that introduced previously' and capitalizes on the geometric suitability of finite elements for 
front-tracking simulations. The original paper presented a few example solutions to show the 
promise of the method, at length scales appropriate to storm surge calculations. The relatively 
small boundary excursions in these examples were resolvable by moving only the boundary 
nodes, keeping interior nodes fixed. 

Because of the difficulties inherent in numerical fluid mechanics, we have since pursued the 
development of deforming element ideas in simpler diffusion situations, for three reasons: 

(a) There are several physically important problems in heat transfer with phase change. 
(b) The numerical point of departure-diffusion on a fixed mesh-is well understood, allowing 

(c) Very large mesh deformations are required to solve problems of practical interest in this 

A series of investigations, culminating in the simulation of physically unstable interface shapes 
during crystal growth, has shown that very large, complex mesh deformations may be accurately 
accomodated.2-s These findings complement those of several others.6- lo As a result of these 
lines of development, we are confident in our ability to construct accurate simulations on 
deforming elements. 

A parallel effort has been devoted to finite element solution of fixed boundary, shallow water 
problems in the context of tidal hydrodynamics. The approach here employs the shallow water 
wave equation in place of the primitive continuity equation.' ' This was originally developed to 

us to focus on the deforming element extension per se. 

area. 
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overcome short-wavelength parasitic modes which appear in many primitive equation models; 
fortuitously it also provides several important computational economies as well. The original 
model, with modifications by Kinnmark and Gray,”, l 3  has now been successfully tested against 
field  observation^.'^- l 7  Tidal simulations of up to 190 (simulated) days have been performed on a 
microcomputer.’* As a result of these studies, we are confident in our ability to simulate tidal 
hydrodynamics on fixed finite elements. 

The present paper incorporates both lines of development. Extension of the original work 
toward estuarine length scales demands smaller elements and larger relative deformations, with 
all interior elements deforming. We begin by deriving the shallow water wave equation in a 
general deforming co-ordinate system, and produce a weak form which is compatible with simple 
Co elements and which displays the natural conditions on the moving boundary. Utilizing elastic 
mappings to manage interior node motion, we show comparisons with two analytic solutions 
plus two simple illustrative estuarine problems. 

The objective of simulating detailed estuarine circulation demands that increased attention be 
paid to advective instabilities. We address these here by simply making the advective momentum 
terms implicit. We recognize, however, that this is an interim solution to a fundamental problem 
which needs a more comprehensive and cost-efrective solution. 

GOVERNING EQUATIONS AND DISCRETIZATION 

The governing equations are the shallow water equations obtained by vertically averaging the 
continuity and momentum equations for a homogenous hydrostatic fluid. In primitive form they 
are: 

continuity 

momentum 

a H v j a t + v -  ( ~ v v ) + g ~ v ~ + f x  H V + ~ H V =  HY, (2) 
where H ( x ,  y, t )  is the total fluid depth, ( ( x ,  y, t )  is the elevation of the free surface above mean sea 
level, h(x, y )  is the bathymetry ( h  = H - c) ,  v(x,  y, t )  is the vertically averaged horizontal fluid 
velocity, g is the acceleration due to gravity, f is the vector Coriolis parameter, T ( X ,  y, t) is the 
bottom friction parameter, Y accounts for momentum input at the surface (such as wind stress), x 
is positive eastward, y is positive northward, t is time and V is the gradient operator. Consistent 
with the ‘shallow’ scaling assumptions, we neglect horizontal shear stresses but include the effect 
of vertical shear in the bottom stress term THY. 

We first introduce the total time derivative 

dldt = alat + V =  - v (3) 
in order to express the equations in the co-ordinate system attached to an arbitrary motion ve f v :  

continuity 

dHldt - v e .  V H  + V H v  = 0  (4) 
or equivalently 

dH/dt + V . H ( v - v e )  + H V .  ye :=  0, (-5) 
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momentum 

~ H ~ / ~ ~ - v ~ * V H V + V * ( H V V ) + ~ H V ( + ~  x Hv+zHv= H I .  (6) 

(7) 

Substitution of (4) into (6) then yields the alternative form of the momentum equation: 

dv/dt + (V - v'). VV + gVl+ f x v + zv = 'P. 

The shallow water wave equation is obtained by operating on the continuity equation ( 5 )  and 
the momentum equation (6). Here we follow the derivations of Lynch and Gray" and Kinnmark 
and Gray,". l 3  focusing on the additional terms that arise due to the deformation of the grid. En 
route we employ the two less common identities which are derived in the Appendix: 

d d 
-v=v--vv"v, 
dt dt 

d d -v. =V.--Vv':V, 
dt dt 

where : denotes a scalar product between two tensors. Taking the total time derivative of the 
continuity equation ( 5 )  yields 

(9) 
dv' 

HVV":VV"=O, d'H dH(v - ve) dH ----tv- - VV':VH(V -V')+-V*V' + HV*-- 
dt2 dt dt dt 

which may be simplified to 

(10) 
d'H dH(V-Ve) dH dv" 
dt2 dt dt dt 

-+V* +-V * V' + HV .-+ v'. VV' . VH - VV' : VHV = 0. 

We now obtain the weak form of (5)  by requiring its orthogonality to a set of weighting functions 
4i: 

(:&) - (H(v - v'), V4i)  + (HV * v', 4i) = - (11) 

where ( ) denotes the inner product 

(a, b )  = j j u * b d x d y .  

The line integral is evaluated along the boundary and n is the unit normal vector directed 
outwards. Note that we have purposely expressed the natural boundary condition H(v-v') in this 
integral. In a similar manner we obtain the weak form of (10): 
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Next, a composite weak form is obtained by adding (1 1) times a numerical weighting parameter to 

to (13): 

The numerical weighting parameter zo, here constant in space, was originally introduced by 
Kinnmark and Gray13 in order to render the implicit wave equation time-stepping matrix 
stationary. In addition to this desirable property, we find that this modification stabilizes a low- 
frequency drift which develops in long-term simulations with the original' formulation.'6 The 
final weak form of the wave equation which we employ is obtained by introducing the momentum 
equation (5) into the third term in (14): 

The weak form of the momentum equation ( 7 )  is similarly obtained in a standard weighted 
residual manner: 

Note that (1 5) and (16) involve only first derivatives and thus may be implemented on simple Co 
finite elements. 

In this study we solve equations (15) and (16) on a deforming finite element grid. With the 
equations expressed in total time derivatives we are now free to let V' track the motion of the grid: 

Here xi is the location of node i, dxi/dt is the velocity of node ii, N is the number of nodes and +i  is 
the finite element basis. Note that this formulation is a generalization of that presented by Lynch 
and Gray' and Kinnmark and Gray.l32 l4  This can most easily be seen by letting ve(x, y, t) equal 
zero everywhere and by letting to equal t in the cases where the latter is constant. 

The Galerkin finite element procedure is used in discretizing the spatial domain. The inte- 
gration is carried out on linear elements and the integrals are evaluated with quadrature points 
coincident with the nodes (integral lumping). The variables used are approximated with a set of N 
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finite element basis functions #Jj, identical to the weighting functions: 
N 

H z  2 Hjbj 
j =  1 

and likewise for i, v, h and z. As a result, from (1 7) we have especially simple time derivatives: 

i.e. the terms involving time derivatives of #J are not invoked here since they are already embedded 
in the equations. 

A three-level finite difference scheme is used to discretize the wave equation in the time 
domain.' ' A second-order leapfrog approximation of the time derivative of H yields 

dHj Hjk" - Hjk-I AHj 
dt 2At 2At ' 

-- -- - 

where AH= H"+' - Hk- '  , the superscript k denotes the time level and At is the time step. In the 
same way we can approximate the second time derivative of H using a centred finite difference 
expression: 

The element velocity ve can be expressed as the total time derivative of the node locations: 

where xj is the x, y co-ordinates of node j. Similarly we have for the element acceleration 
d2x.  ~:+ ' -2x~+xjk- '  I- 
dt2 At2 

Furthermore, 4 and its derivatives are evaluated using the grid at time level k: 

4; = #i (Xk). (204 

The remaining terms are centred at time level k .  The gravity term in (15) may be treated implicitly 
while still centred in time by use of the time weighting parameter 8: 

e 9 
2 2 

z k  X- ( z k  + + z k -  1) + (1 - e)zk = - Az + z k  + q z k -  1 - zy), (20f) 

where 8 varies from 0 (completely explicit) to 1 (completely implicit). 
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Substitution of the approximations (17)-(20) into (15) yields the matrix equation 

[A]k{AH)k= { R  W}k,  (2 1 4  

where 

and 

I T  e 
V(k+OV((k-l-(k)--V(hk-bl-hk-l)  ,v4i  

2 

+ 2 ( ( H k - H k - ' ) ,  4i)k-At2 H--, V 4 i  -At2(TOHV've, 4i)k ( :te y 
-At2(ve.Vv"*VH, $ i ) k + A t 2 ( V ~ e : V H ~ ,  4i)k 

- At2( [ - ve VHV + V * HVV + f x HV + (T - T,)Hv + TO.HV~ - HY], V4i)k 

In the discretization of the momentum equation (16) a two-level scheme is 

(2 1 4  

adopted, utilizing 
time levels k and k + 1, which is centred at time level k + 1/2. The total time derivative of the fluid 
velocity is approximated according to 

dv. v?+'-vk Avj J- J - _ ,  - 
dt At At 

w-- 

Furthermore, the element velocity is approximated by 

and consequently 4 and its derivatives, which change through time due to the grid deformation, 
are evaluated using the grid at time level k+ 1/2: 

(224 &+ 1/2 = @(Xk+ 112), 

where the notation k+ 1/2 corresponds to the average of the two levels k and k+ 1: 

(224 Zk+ 10 =&i!k + Zk + 1)- 

The remaining terms are linearized and centred at time level k+ 1/2. The problems of main 
concern in this study are characterized by short length scales and potentially large fluid velocities. 
This makes the treatment of the advective term in the momentum equation crucial for numerical 
stability. An implicit treatment of the advective term has in this study proven to yield successful 
results: 

vk + 112 . v V k  + 112 -1. k +  1 . VVk + + k  . VVk+ 1. - 2 V  

This scheme" is linearly implicit while still second-order correct in time. 



WAVE EQUATION HYDRODYNAMICS 1077 

By substituting the approximations (18), (19), (22) into (16), the momentum equation reduces to 
the following matrix equation: 

[ E l k  (&Ik = { R M I k ,  (234 
where 

6 ~ 2 ;  - = A u ~  = u:' - u!, (23b) 

Sv2i= Aui= 0:' -0:. (234 
Here ui and ui are the x and y components of the fluid velocity v. Similarly we denote the 
components of the grid velocity by U" and U" and the vertical component of the Coriolis vector f is 
denoted byf: The momentum matrix takes the following form: 

-At( fUk, b i ) k + 1 / 2 - A t ( ~ ~ k ,  4i)k+1/2+At("yr + i ) k + 1 / 2 .  (23i) 

BOUNDARY CONDITIONS AND NODE MOTION 

On fixed boundaries we apply boundary conditions on H or v - n  in the conventional way as 
follows. Where H is known we sacrifice the wave equation in favour of exact specification of H j .  
Conditions on v - n  are enforced directiy by sacrificing the normal component of the momentum 
equation in favour of exact specification of van; in addition, prescribed values of v * n  are used to 
evaluate the boundary integral in the wave equation. The local normal is computed to be parallel 
to $n&ds." 

On the moving boundary we have both H=O and (v-v')*n=O. We satisfy H=O exactly and 
sacrifice the wave equation there. The momentum equation is utilized to compute both compo- 
nents of v, following which we set (v - v") - n = 0 and V' - t = 0. 
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On the interior ve may be selected arbitrarily, consistent with good discretizati0.n practice and 
its known boundary values. In this work interior node positions are determined as the deform- 
ation response of an elastic medium in plane stress3 with known boundary deformations. This 
permits the mesh topology to remain constant during the simulation, with the node locations 
varying but not their interconnections. 

A single time step, from levels t"-' and tk to level tk+' ,  is achieved without iteration as follows. 
First, boundary values of ve at  level k are computed and then interior values are computed from 
the elastic relations. This allows projection of the mesh positions: 

$' = $- + 2A.t~;. (24) 
With ve known we solve (21) for Hk+l. Then with gVCk+' known we solve (23) for vk+ l .  Since (23) 
is centred at tkf'", we utilize ve=(xk+' -xk)/Ar in this final (calculation (Figure 1). 

COMPARISON WITH ANALYTICAL SOLUTIONS 

Numerical solutions of two one-dimensional moving boundary problems are compared with 
their corresponding analytical solutions. Both cases consider waves that propagate in a friction- 
less fluid (z=O) toward a beach with a uniform slope u (Figure 2). It is convenient to express the 

begin time step Imp, C = 1 . . .ma21 

update time, 

calculate nodal bottom friction, 7," 

calculate normal directions at moving boundary, n: 

calculate new boundary location, x:" . n: = x:-' t 2At(v:. n:) 

apply known values of x:" 

compute x'*' for interior nodes 

calculate v;, dv;/dr and h:+' 

begin clement loop for wave equation 

1' = f L - l  t At 

assemble stiffness matrix of the wave equation, /A]' 

xs*e~i~blc wave equation righl hand side, (RH'}' 
e n d  clrnient loop 

apply houndary conditions on fluid depth 

solve t he wave equat ion 

update elcnient velocity: v; = w 
begin eleinent loop for nionlent i m i  equat ion 

asscmble nionicntum stiRncss niatrir. IB:& 

nsscnihle nionicnt uni right hand ride. (RM)" 
end element loop for monientu~i~ equation 

npplv velocity hoiindary conditions 

b o l w  the  nionicntuni equation to get velocities 

writr result \ 

upatr arravs in time. Z:-' = 2," m d  2," = ,Z:" 

e n d  tinic step loop 

Figure 1. Flow chart ofalgorithm. maxt is the maximum number of time steps, k indicates the current time level and j is a 
node index 
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Figure 2. Definition sketch. The fluid has a boundary of uniform slope a and a free surface at height [ above its 
undisturbed level 

analytical solutions using the following dimensionless quantities: z = [/crL, u = u/J(gxL), x = x/L, 
t=tccg/L, c2=z-xx, l=2 (u+ t )  and 0=4c. In these definitions the characteristic length L is 
specified for each problem. 

First we consider an initial value problem in which the water level at the coastline is initially 
depressed. The fluid is held motionless and then released. The initial wave shape is given in 
parametric form in terms of the dimensionless sea surface elevation z and the dimensionless 
spatial co-ordinate x: 

5 a3 

Here L corresponds to the initial length of the fluid domain and a = 1.5( 1 + 0 - 9 p .  These waves 
have maximum heights equal to E and have heights equal to 09.5 at x=  - 1. Furthermore, the 
slope of the sea surface at the shoreline is initially zero for such waves. The analytical solution is 
given byZo 

The motion of the shoreline is obtained from the same equations by setting (r = 0. In applying the 
numerical solution technique, the domain is discretized on a grid which is initially 500 km and 
consists of 50 nodes. On the boundary located in deep water the fluid depth is specified according 
to the analytical solution and the other boundary is moving. The values of L and E are 4166 km 
and 0.1 respectively. The simulation is carried out to 28.0 h using a time step of 0.1 h and the value 
of zo used is lop3. The numerical solution shows good agreement with the analytical solution 
(Figure 3). 

The next example considers the fluid motion induced by periodic forcing, such as by tides. The 
elevation of the free sea surface is prescribed at  the fixed boundary: 

z = E cos (27ct/T). (27) 
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B I 2 3 4 5 6 7 

X I 0 5  

spatial roorclinatx ( m e t e r s )  

Figure 3. Time history of sea surface elevation for the initial value problem. The numerical solution (points) is compared 
with the analytical solution (solid curves). Time is given in hours 

Here the scaled amplitude E is related to the dimensional amplitude a by ~ = a / u L .  The scaled 
period T is related to the dimensional period T by T = TJ(gcr/L) and L is the total length of the 
undisturbed fluid domain. The analytical solution is presented by Carrier and Greenspan” and 
expressed in a simpler form by Johns:”* 

(284 z=  --‘u2 +A J,(xo/T) cos (nl/T), 

where Jo and J ,  denote Bessel functions of the first kind. The amplitude factor A is obtained by 
linearizing the governing equations on the fixed boundary: 

A = E/J0(471/T). (29) 

(30) ( = A 2  2u  + A  cos (nA/T). 

Specifically, we consider a wave which is forced with an amplitude of 0.1 m and a period of 
12.4 h on the fixed boundary. The length of the undisturbed fluid domain is 100 km and it is 

The displacement of the shoreline, (, is obtained from (28a) by setting o=O: 

* In the work presented by Johns” a factor of four appears in front of the amplitude factor A in (28b). We find, however, 
that in order to satisfy the kinematic boundary condition on the moving boundary we need to discard this factor and 
apply the equations as presented in (28a) and (28b). 
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discretized on a grid consisting of 20 nodes. Here the numerical simulation is carried out for six 
forcing cycles using 124 time steps per cycle. The value of zo is The solution is compared 
with the analytical solution at different points in time, with good agreement (Figure 4). 

While the governing equations have approximately linear response when the fluid depth is 
large, we note that the solution close to the moving boundary is essentially non-linear in 
character. As the offshore tide propagates towards the shore, it becomes increasingly distorted 

9. -1 2 

a. 
t =. 6.3 

/4 

0 

2 -9.1 
c 

\ -  /+= 0.1 

-9.3 1 ' 1 ' 1  I 1 ' 1  
9.9 9. 2 9. 4 0 . 6  9 . 8  1 . 9  1 .2  

XlOS 

spatial roordinatr (meten)  

7 s  7 b. t =  3.2 

Figure 4. Time history of (a) sea surface elevation and (b) fluid velocities for the periodic problem. The numerical solution 
(points) is compared with the analytical solution (solid curves). Time is given in hours 
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due to increased influence of higher harmonics. This non-linear character of the governing 
equations puts high demands on the numerical solution technique, considering both stability and 
accuracy, under these limits. In Figures 5(a)-<d) the accuracy of the numerical solution is 
demonstrated for several constituents, and in Figure 6 the frequency spectrum of the numerical 
solution is compared with the analytical solution at a fixed point in the vicinity of the moving 
shoreline. The Fourier amplitude for the jth frequency, A ( j ,  x), is computed by the fast Fourier 
transform of the time series data for the first six periods of the simulation: 

N- 1 

& j ,  x) = C [ ( k ,  x) eiZnjk",, (31) 
k = O  

where k denotes the time level, i is the imaginary unit J( - 1) and N is the number of time levels. 
The numerical solution compares well with the analytical solution for each constituent. However, 
it also contains additional small-amplitude noise. 

In addition, it should be mentioned that long-term stable numerical results have been obtained 
in the frictionless case. Experimentally we have found an unstable behaviour of the numerical 
solution for the periodic problem using zo = 0. Slowly growing wiggles in the solution eventually 

a 

b 

C 

I ' l ' l ' l ' l  
0 2  0 .  - 6  0 .  I .  

. IDS 

spatial coordinate (meters) 

Figure 5. Four Fourier components of the decomposed sea surface elevation are shown as a function of the spatial co- 
ordinate. Re{A(j, x)}, is shown for the steady-state component (a), fundamental frequency (b), first harmonic (c) and 

second harmonic (d). The numerical solution (point!;) is compared with the analytical solution (solid curves) 
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O =  STEADY STATE, 
I = FUNDAMENTAL FREQUENCY, 
2 = FIRST HARMONIC, 
3 =  SECOND HARMONIC, 
4 = THIRD HARMONIC. 

frequency components 

Figure 6. Comparison of the numerical solution versus the analytical solution in the frequency domain. IA(j, xo)l is shown 
forj=O to 28 for the numerical solution (white bars) and compared with the analytical solution (shaded bars) at a fixed 

point xo in the vicinity of the shoreline 

Figure 7. Experimental results in the frictionless periodic case showing the influence of Fr and on the stability. 
The time until negative fluid depth is encountered in the solution is shown as a function of Fr for ~ ~ = l O - ~ s - '  

('+'signs), s - l  ('x'signs), ~ , = 1 0 - ~  s- '  (squares) and r ,=Os- '  (points) 

render negative fluid depth, which is chosen to be the criterion for terminating the program. We 
have found the termination time being related to the Froude number: 

F r =  Ivl/J(sH). (32) 
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The maximum Fr  is reported in each case, computed by using the average of H and IvI on each 
element. By using zo > 0 we can obtain long-term stable numerical results (Figure 7). However, it 
is to be noted that by severely increasing zo (z,,%w, where cr) is the fundamental frequency) the 
wave equation reduces to the primitive continuity equation, at which point we expect to 
encounter problems which have been discussed earlier.' ' 

NUMERICAL, TEST CASES 

Two test cases with relatively large boundary excursions are presented. The geometries are 
idealized while still representing problems of physical significance. The forcing is periodic, 
corresponding to the M, tide, which has a period of 12.4 h. The Coriolis and wind stress effects 
are neglected. Further, the value of the bottom friction parameter z is assumed constant and equal 
to zo s-'). The simulation time corresponds to six M, periods using 124 time steps per 
period. 

In the first example a rectangular domain with uniformly sloping bathymetry is considered. 
The basin has dimensions 10 km by 10 km and a maximurn bathymetry of 1 m at the forcing 
boundary (Figure 8). The grid consists of 49 nodes and 72 elements. The tidal amplitude at the 

Figure 8. Definition sketch of rectangular basin. The tidal flow in a rectangular domain is studied. The forcing boundary 
is located at x=O, on which a sinusoidally varying sea surrace elevation is prescribed. The dashed line shows the location 
of the moving boundary at rest. There is no flux of water across the boundaries shown as thick shaded bands. Lengths are 

given in metres 
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forcing boundary is 0.3 m, producing a maximum boundary deformation of approximately 50% 
of the domain (Figure 9). The wavelength of the fundamental frequency is considerably larger 
than the fluid domain, which results in a relatively uniform flow field (Figure 10). In Figure 11 the 
boundary location is shown as a function of time. 

In the second case an L-shaped basin is studied which has a length of 30 km and a width of 
50 km. The bathymetry has a maximum of 1.0 m and a uniform slope (Figure 12). Here the tidal 
amplitude at the forcing boundary is 0.1 m, creating a boundary motion with an approximate 
range of 6Ax, where Ax is the mesh spacing (Figure 13). The grid consists of 923 nodes and 1708 
elements. In Figure 14 the boundary location is shown at different points in time. In Figures 15 
and 16 the solutions for v and H are shown at t = 560 h. The tidal distortion is shown in Figure 17 
in terms of time series plots of the boundary location for several points along the boundary. 

y i  
I 

I 

a. 

Y 

B ! 

b. 

Figure 9. Maximum deformation of the rectangular mesh. The grid for the rectangular domain is shown at (a) t = 586 h 
and (b) t = 65.6 h 
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-0 500 -0 2 1 4  0 071 0 357 0 6.3 0 9191 1 214 1 500 x 
x ~ ~ 4  

Figure 10. Vector plot of fluid velocities in the rectangular case. The nodal values of the fluid velocitiy are shown at 
t == 62.3 h 

Elapsed time (hours) 

Figure 11. Time series plot of boundary location for rectangular case. The motion in the x-direction is shown for the 
boundary node located halfway between the fixed boundaries 
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5 
5 . 0  '10 ___+ 

0 

1087 

Figure 12. Definition sketch for the L-shaped domain. The tidal flow in an L-shaped domain is studied. The forcing 
boundary is located at y=O, on which a sinusoidally varying sea surface elevation is prescribed. The dashed line shows the 
location of the moving boundary at rest. There is no flux of water across the boundaries shown as thick shaded bands. 

Lengths are given in metres 
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b. 
. 0 R 

Figure 13. Maximum deformation of the grid in the L-shaped case. The mesh for the L-shaped domain is shown at 
(a) t=57.0 h and (b) t=63.0 h 
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Figure 14. Time history of boundary location in the L-shaped case. The location of the boundary is shown at different 
points in time (hours) 

~. ~~ 

X 

Figure 15. Vector plot of fluid velocities in the L-shaped case. The nodal values of the fluid velocity are shown At 
t = 56.0 h 
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Figure 16. Sea surface elevation in the L-shaped case. Free surface elevation contours (centimetres) are shown at 
t =: 56.0 h 

Figure 17. Time series plot of boundary location for the ],-shaped case. The motion of the boundary in the y-direction is 
shown at several points along the boundary. Labels correspond to locations defined in Figures 13(a) and (b) 

DISCUSSION 

The weak form of the shallow water wave equation proposed here has several desirable features: 

(a) For fixed boundary problems ( v e s O )  it reduces to the form presently being used, whose 

(b) Since only first derivatives in space are involved, it may be implemented on the simplest 
properties are reasonably well understood. 

finite elements. 
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(c) The natural conditions on the moving boundary are invoked. 

Implementation on linear triangles with a conventional three-level, semi-implicit time-stepping 
algorithm shows satisfying results. The retention of a lossless analytic solution over several tidal 
periods is especially noteworthy. 

Two numerical strategies have been used without attempting to maximize their cost-effective- 
ness: the interior gridding and the treatment of the advective terms. These features together 
dominate the run time-some of the 2D cases require tens of hours of CPU time on a 
VaxStation 11. Our experience has shown that the elastic gridding is generally very robust among 
mapping strategies; at the same time it is the most expensive, since all boundary displacements 
contribute directly to all interior node displacements, and x- and y-displacements are intimately 
coupled. In these applications simpler methods may well prove to be entirely adequate. Trans- 
finite mappings are a particularly attractive Relative to the advective terms, we look 
forward to future advances and expect that algorithmic improvements in the fixed mesh reduction 
of this problem will be applicable as well in the more general context of moving boundary 
problems. 
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APPENDIX 
Proof 

d dA 
dt dt 
-VA=V--VV'. VA, 

where A is a scalar quantity. The left-hand side is equal to 

a2 A 
P+V' , -$  

a2 A 9 + v ' _ _  a2A a2 A 
+U' ---%+ti' __ 

ax2 axay axay a Y  
a u e  a A  ave a,] A [ aue aA ave a A  ] 
ax ax ax ay ay ax ay ay 

+-- x- --+-- 9 

(33) 

dA 
dt 

= V- - VV' * V A ,  
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which is equal to the right-hand side. Above, P and 9 are unit vectors in the x- and y-directions. 

Proof 

Vv‘ : VB, d dB 
dt dt 
-V B = V - _ _  (34) 

where B is a vector quantity with x-  and y-components B,  and B y  The left-hand side is equal to 

a aB, aB, a aB, aB, a aB,, aB =;[ ‘ * + y l f u ‘  a,[ d x + d y l + v e  a,[ X . 4  

a2B, a2B,  a2B, a2BY +ue -+ti“ __ + v e  ~ + v e  -- 
ax2 axay axay a$ 

a dB, aue aB, ave aB, a u e  aB, a U e  aB, 
=%[ dt ] fy[?] ax ax ax a y  ay  ax ay ay  __ +- - 

- - v .d- VV‘ : VB, 
dt 

which is equal to the right-hand side. 
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